Engineering focus module: Aeronautical engineering

30 hours indicative time

One or more examples of aeronautical engineering must be used to develop an understanding of the scope and nature of this profession.

Some examples include: design and construction of recreational aircraft, general aviation aircraft, military aircraft, space craft, agricultural aircraft, helicopters and home-built aircraft.

Outcomes

A student:

- H1.1 describes the scope of engineering and critically analyses current innovations
- H1.2 differentiates between the properties and structure of materials and justifies the selection of materials in engineering applications
- H2.2 analyses and synthesises engineering applications in specific fields and reports on the importance of these to society
- H3.1 demonstrates proficiency in the use of mathematical, scientific and graphical methods to analyse and solve problems of engineering practice
- H3.2 uses appropriate written, oral and presentation skills in the preparation of detailed engineering reports
- H3.3 develops and uses specialised techniques in the application of graphics as a communication tool
- H4.1 investigates the extent of technological change in engineering
- H4.3 applies understanding of social, environmental and cultural implications of technological change in engineering to the analysis of specific engineering problems
- H5.2 selects and uses appropriate management and planning skills related to engineering
- H6.1 demonstrates skills in research, and problem-solving related to engineering

1. Scope of the profession	
Students learn about:	Notes:
 nature and scope of the aeronautical engineering profession 	
 current projects and innovations 	
 health and safety issues 	
 training for the profession 	
 career prospects 	
 unique technologies in the profession 	
 legal and ethical implications 	
 engineers as managers 	
 relations with the community 	

Students learn to:	Notes:
 define the responsibilities of the aeronautical engineer 	

 describe the nature and range of the work of aeronautical engineers 	
 examine projects and innovations from within the aeronautical profession 	
 analyse the training and career prospects within aeronautical engineering 	

2. Historical and societal influences	
Students learn about:	Notes:
 historical developments in aeronautical engineering 	 aeronautical engineering first come into reference with birds and human flight. Apparatus of wings and feature of planes
 the effects of aeronautical innovation on people's lives and living standards 	
 environmental implications of flight 	

Students learn to:	Notes:
 research the history of flight in Australia and understand the way it has impacted on people's lives 	• A
 examine safety issues related to flight and flying 	

Students learn about: Notes: • fundamental flight mechanics relationship between lift, thrust, weight and drag lift to drag ratio effect of angle of attack • In planes design engineers focus on 4 main forces → Lift, drag, weight and thrust. • Lift (L) is the upwards force that holds the plane in the air. It needs to be equal to the weight force, where the ailerons achieve most of its flight. • Weight (W) • Weight (W) • Tree due to gravity, pulling the plane down. D) force that acts to oppose the motion. In most aircraft in motion, the drag is air resistance, which is used to slow the plane • Lift (T) rrces that allows the aircraft to push in the desired direction. It is created by the engines, and propeller, dragging air which s drag. • Strag. ation of these forces allows for a straight and constant level flight (equilibrium).	3. Engineering mechanics and hydraulics		
 fundamental flight mechanics relationship between lift, thrust, weight and drag lift to drag ratio effect of angle of attack Pitching moment due to finance of a splane In planes design engineers focus on 4 main forces → Lift, drag, weight and thrust. Lift (L) is the upwards force that holds the plane in the air. It needs to be equal to the weight force, where the ailerons achieve most of its flight. Weight (W) Tree due to gravity, pulling the plane down. D) force that acts to oppose the motion. In most aircraft in motion, the drag is air resistance, which is used to slow the plane t (T) received moment drag in the aircraft to push in the desired direction. It is created by the engines, and propeller, dragging air which s drag. ation of these forces allows for a straight and constant level flight (equilibrium). 	Students learn about:	Notes:	
	 fundamental flight mechanics relationship between lift, thrust, weight and drag lift to drag ratio effect of angle of attack Pitching moment due to elevator Fitching moment due to elevator Figure 3.1 Forces and moments on a plane 	 In planes design engineers focus on 4 main forces → Lift, drag, weight and thrust. Lift (L) is the upwards force that holds the plane in the air. It needs to be equal to the weight force, where the ailerons achieve most of its flight. Weight (W)	

 Flight Dynamics. If the 4 forces are manipulated and not in equilibrium (usual 	ally caused by the surface controls), the	en they will
experience a moment .		
 Pitching → Elevators 		
This is used to determine the angle of attack and direction of the nose		(either
moving up or down). Pitching involves the horizontal stabiliser	Ditabian mamont	(Elevators)
that move up to induce drag and hence reduce lift, causing the nose it	Figure 3.2 Pitching moment	point
upwards and conversely.	right 0.2 Thomas non-one	
 Rolling → Ailerons 		
This is used to determine the direction and change the aircraft position		(left or right).
Rolling involves the wing's ailerons, that have opposites motions on		each side, to
allow for a lift on one wings and a reduce lift on the other causing a roll.	Holling moment	Useful for
making Banks.	Figure 3.3 Froming moment	
– Yawing → Rudder		
This used uses to turn the aircraft to a left or right motion . Yawing involv	ves the	vertical
stabilisers (Rudders) which help deflect the plane. If the rudders deflect l e	eft, the	aircraft will
yaw right forcing a right turn, and conversely.		D
Flight Surface Controls. There are three mains deflectors that help stabilise a	ind	[*] control the
aircraft's motion.	(1)	
– Elevators		
Used to assist Pitching moments. They are located horizontally at the bac	ck of the	plane , at the
tailplane. They exists as a part fixed in a hinged, or be a whole horizontal	elevators,	at the tailplane
(stabilisers). Elevators are useful to achieve an ascend or a descend of a p	plane Figure 3.4 Yawing moment	or making
the right angle of attack.		
– Ailerons	1 286	
	Figure 3.56 Allerons allow the aircraft to turn or roll	

	 Used to assist Rolling moments. They are located horizontally at the plane's wings besides the flaps. They are us imbalance in the forces, to create a rolling motion, where the ailerons on each side act Ailerons are useful to achieve banking techniques, curving the plane and making a turn (by wings, and lowering the other). Rudders Used to assist the Yawing moments. They are located as vertical stabilisers at the tailplane. yawing and a left or right turn possible by deflect one side, to allow the aircraft to turn the Rudders, are useful to making a turn. Flaps Used to achieve (MORE INFORMATION) 	ed to create an oppositely. lifting one They makes opposite way.
 Bernoulli's principle and its application to venturi effect lift 	 Venturi Effect States that in a fluid, the pressure to constant and to maintain a pressure in the aileron, it will induce lift. In relations to the venturi airflow flows through the glass hour pipe. At stage one all the airflow normally, hence there is high pressure and a normal slow velocity. As the pipe hole is smaller and hence, all the airflows must travel at the direction, at the same time, means that the top and streamline must distance to flow with the middle streamline, flowing at the normal slow velocity. This is through the venturi effect the Bernoulli's principle as the increase in velocity of the fluid due to its equilibrium in streamlines will create a fluid. Lift Bernoulli's Principle is used to explain lift in the wings of the plane. In relations to the Venturi effect, as wind and air to colliding with the aerofoil they will create streamlines that that are massless air molecule flowing in the direction. It is said through Bernoulli's principle that all the create streamlines simultaneously travel at the same time and velocity, hence the streamlines at the bottom travel unimpeded, wh streamlines must curve and detour around the aerofoil wings. To hold Bernoulli's principle, they are required to velocity due to their increase in distance that they need to travel. This increase in velocity will decrease in press 	constant effect, when can flow in stage two, same travel a longer t, that explain low-pressure shaped wings, opposing are to illst the top travel at a faster sure (Venturi

	 The shape of the wings is known as aerofoils. Streamlines Streamlining occurs when succeeding molecules follow the same path in a flow. Pressures in Fluid (aircrafts) Static Pressure Static Pressure is caused by no motion in the fluid Dynamic Pressure Dynamic Pressure is caused when there is an uneven pressure equilibrium.
 bending stress airframes 	 Originally, the piston combustion engine was used since the Wright Brothers. These were similar to the engines cars used but with cooling systems They originally had a poor power to weight ratio Then came the rotary piston engine This was an engine that was lighter, more powerful and cheaper to produce. But they were very difficult to fly due to the gyroscopic effects of the pistons. They're still used today, and they are usually lighter, simpler to maintain and cheap to obtain. Which is good on small-scale/recreational aircraft. They cannot fly very fast as these engines are not as powerful as others. Easy to maintance and lighter
 propulsion systems including internal combustion engines jet including turbofan, ram and scram turboprop rockets 	 Propulsion systems provide thrust for the aircraft. Large amount of air mass is heated up to create high pressure and high velocity jets, which are ejected at the rear, to create thrust and provide energy for the turbines. Turboprop engines A propeller located at the front collects and suck air into the inlet, consisting of a turbine and combustion chamber. The air is then compressed and forced in high speed streamlines, and are provided with fuel. This in turn heats up the air and drive the turbine

	 shaft, which operates and spins the propeller (which in turn collects air and cycles). The remain hot gas is ejected to create thrust and drive the aircraft. Turboprops have little efficiency, as most of the energy is placed to spin to propeller. They may require a reduction gear, to slows the speed of the increasing turbine and reduce the wastage of power to loud noises. Turboprop engines are used for small, recreational aircraft. Doesn't have a propeller, instead incoming air is sucked into the inlet, consisting compressor and a combustion chamber. When air is forced into the compressor, layers of blades create a jump in air pressure and provide much higher pressure and velocity then normal streamlines. Witt this, fuel is induced to heat up the air, creating streams of hot air known as jets. Streams of jets are ejected and hence produces thrust. (Analogy → Depleting balloon, as when a release of the neck will create an imbalance pressure, causing high velocity air to ejects and propeller the balloon). Combustion engines
 fluid mechanics 	Pressure
Pascal's principle	 Hydrostatic Pressure (Static Pressure)
hydrostatic and dynamic pressure	Pressure that is exerted equally through the fluid, like the force of gravity, where no external motion is applied.
- applications to aircraft	$P_{\rm S} = \rho_{\rm S} g h$
components and instruments	 Dynamic Pressure When extra procedure is present due to relative motion of the fluid
components and instrainents	1
	$P_{\rm D} = \frac{1}{2} \rho_{\rm D} v$
	- Total Pressure
	$Pressure_{Total} = Pressure_{Static} + Pressure_{Dynamic}$
	$P_{\rm T} = \rho_{\rm S} g h + \frac{1}{2} \rho_{\rm D} v^2$
	 Pressure systems on are used on aircraft.

 Applications to aircraft components and instruments Pitot Tube Used to enable air to flow and measure its velocity, and pressures. Consisting of two pipes, one is fixed perpendicular to air flow to sense
 static pressure, whilst the other is faced in the direction of the flow to sense the total pressure. Another CONCEPT THAT I HAVEN'T GRASPED In the pitot tube, there are fluid placed in the tubes to allow a height difference in both the tubes. This determines the velocity and the rate of the flow. However, due to wind and generate of cold condition, it may freeze the fluid hence a heating pitot head it used
 Airspeed Indicator Used to measure the speed of the aircraft in the air. It takes in account of the total pressure and static pressure. When air enters to pitot tube, into the diaphragm, the static pressure (already there) is accompanied with the dynamic pressure, produced by the incoming air. To measure the relative motion, the static pressure line is introduced to nullify the static pressure to contribute to the expansion and contraction of the diaphragm. This diaphragm is linked to a scale reading.
 Altimeter Used to measure the height or altitude of the aircraft position. Static pressure enters the pitot tube via a static vent, which is collected by the Earth atmospheric pressure above sea level. A decrease in Earth's atmosphere, decreases the air molecule that is subjected onto the static pressure, and hence an increase in attitude. This enables the diaphragm to expands and contracts and the movement is indicated by a gear system on a scale (dial). Vertical Speed Indicators (NOT IMPORTANT) Used to measure the speed and rate of an ascend and decrease. Takes in account will static pressure.

Students learn to:	Notes:
 apply mathematical and graphical methods to solve flight-related problems 	• Lift To Drag Ratio $tan\theta = \frac{D}{L}$ $\frac{L}{D} = \frac{1}{tan\theta}$
 outline Bernoulli's principle as applied to instrumentation and lift 	
 investigate the nature and effect of bending stresses, applying appropriate mathematical methods 	
 describe the operational principles and use of the stated propulsion systems used in the aircraft industry 	

4. Engineering materials	
Students learn about:	Notes:

 specialized testing of aircraft 	Non-Destructive Testing	Description	Other Notes
materials	Visual Inspection	A magnifying glass is used to inspect the internal cracks	Used repaired components
dve pepetrant		formations and small flaws. Hot oil is poured in the	
X-ray gamma ray		structure and the movement of the oil will visualise if flaws.	
magnetic particle	Dye Penetrant	The component is cleaned and then painted with penetrant	Used for components that many have
ultrasonic		fluid,	external cracks due manufacturing
			fatigue.
	X-ray	A X-ray scan is done on the component where the results	Used for small components, to detect
		can be displayed on a photographic film or a fluorescent	Internal voids and subsurface cracks.
		screen	
	Gamma ray	Same as X-ray but with a high more dangerous EMR.	
	Magnetic Particle	The item become magnetised and the magnetic field lines	Works well on magnetic materials like
		that have discontinuity or accumulate due to the cracks,	Steel and iron
		and defects provide the flaws.	
	Ultrasonic	A ultrasonic equipment is used as a vibration as, the	Used for any type of component. They
		reflection of each vibrations can be timed or the pulses of	are
		each interval, can help determine internal flaws	Mainly used for small internal cracks.
 aluminum and aluminum alloys 	 Metals used mainly in comme 	ercial airbus and aircrafts are heat-treated aluminium alloy, whi	ist military aircraft consist of titanium
used in aircraft including aluminum	and stainless steel.		
zinc, aluminum silicon magnesium,			
aluminum copper	- Aluminium is ductile and	malleable and very corrosive resistant, hence is very soft and lac	cks strength.
	Silicon		
	As a non-metal material, <i>i</i>	Aluminium Silicon Alloy, makes the alloy harder and not brittle, i	reducing it melt point for easier casting.
	Magnesium		
	 Aluminium Magnesium Al 	loy, increase its tensile strength, hardness and weldability.	
	■ Zinc		
	– Aluminium Zinc Alloy, can	be heat-treated to increase stiffness and strength, however ver	ry brittle.
	Copper		
	– Aluminium Copper Alloy,	increases strength and hardness as it ages, whilst preventing cra	ick formation and is more shock
	resistant.		
	Cold Work 🗲 Rolling bending di	rawing and pressing (Non Heat Treatment)	

 structure/property relationship and alloy applications changes in macrostructure and microstructure changes in properties 	
 heat treatment of applicable alloys 	 Stabilising When components are manufactured, that internal stress changed, hence stabilising process allows for the materials to relieve internal stress retaining its original strength and hardness. The component is heated to about 250 degrees for up to 5 hours before allowing it to slowly cool in the air. Annealing The component is heated to about 360 degrees for an hour before it is air cooled. This process helps soften the aluminium alloy and improves corrosion resistant.
 thermosetting polymers structure/property relationships and their application manufacturing processes compression moulding hand lay-up vacuum lay-up modifying materials for aircraft applications 	
 composites types including reinforced glass fibre, Kevlar, carbon fibre and Fibre Metal Laminate (FML) as used in aircraft construction 	 Reinforce Glass Fibre Reinforce Glass Fibre can either be tempered glass or laminated glass. Kevlar Carbon Fibre They have excellent strength to weight ratio, making them very strong, providing high stiffness. Having outstanding high temperature capabilities, they are extensively used in aerospace vehicle, as nozzles, re-entry vehicles, and jet turbines. For commercial airbus, they are used as aircraft brakes to withstand the friction of decelerating which causes high temperatures. Epoxy

 structure/property relationships and their application in aircraft 	 This is a matrix for carbon fibre providing high toughness at low cost (excellent mechanic properties). Fibre Metal Laminate (FML) Different fibre metals are sandwiched with a core. In aircrafts, the cores are either, Honeycomb Core or Syntactic Core.
 corrosioncommon corrosion mechanisms in aircraft structures pit and crevice corrosion stress corrosion/cracking corrosion prevention in aircraft 	 Pitting Pitting is a form of corrosion that occurs when a material comes into contacts with acids, alkaline and chemical solution. It causes the metal to corrode into pit holes losing ductility and strength. Coating the surface or cleaning it with reduce pitting corrosion Crevice Corrosion In crevice and inaccessible corner of metals, they lack oxygen compared to other parts. Hence they become anodic, losing gaining electrons and corroding. To prevent crevice corrosion on aircraft, the corners are vented and are drained, to allow for oxygen and remove electrolytic necessary for corrosion to occur. Stress Corrosion/Cracking Metal under stress with corrode more often than unstressed metal. They have the ability to crack protective layer and hence make the surface vulnerable to corrosion and ultimately failure of the parts. Prevention of Corrosion Aircraft parts can be protected from corrosion by coating the surface with a sacrificial anode or hot dipping in molten zinc. But, the most effective and simplest method is carefully cleaning all the parts of the aircraft. The skin of the aircraft, battery acids, floor and exhaust system should be thoroughly cleaned off.

Students learn to:	Notes:
 describe non-destructive tests used on aircraft materials and components 	
 analyze structure, property relationship, uses and appropriateness of materials and 	

	processes used in aeronautical engineering applications	
	investigate the effects of heat treatment on the structure and properties of aluminum alloys	
	justify appropriate choices of polymers for their application and use in aircraft	
•	describe the uses and application of composites used in aircraft construction	
•	understand the mechanism of corrosion common to aircraft components and identify corrosion prevention techniques	

5. Engineering materials	
Students learn about:	Notes:
 freehand and technical drawing pictorial and scaled orthogonal drawings 	
 Australian Standard (AS 1100) 	

 developments transition pieces 	
 graphical mechanics graphical solution to basic aerodynamic problems 	
 computer graphics, computer aided drawing (CAD) 3D applications 	
 collaborative work practices 	
 Engineering Report writing 	

Students learn to:	Notes:	
 produce dimensioned orthogonal component and scaled drawings applying appropriate Australian Standard (AS 1100) 		
 construct the development of non- circular transition pieces 		
 construct quality graphical solutions 		

 use appropriate software to produce pictorial drawings 	
 work with others and identify the benefits of working as a team 	
 complete an Engineering Report on the aeronautical engineering profession with reference to the following aspects: 	
 nature and range of the work of aeronautical engineers engineers as managers technologies unique to the profession 	
 current projects and innovations health and safety issues 	
 nearth and safety issues ethics related to the profession and community career prospects training for the professions 	
 use of appropriate computer software and presentation technique 	